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Abstract

The paper deals with dynamic response of a thin-walled rectangular plate subjected to in-plane pulse loading. The
plate is made of orthotropic (fibre composite) material in which the principal directions of orthotropy are parallel to the
plate edges. The plate is characterised by a widthwise varying fibre volume fraction. The structures are assumed to be
simply supported at the loaded ends and at non-loaded ends with five different boundary conditions (both simply sup-
ported, both fixed, simply supported fixed, simply supported free edge, fixed free edge). In order to obtain the equations
of motion the non-linear theory of orthotropic thin-walled plates has been modified in such a way that it additionally
accounts for all components of inertial forces. The differential equations of motion have been obtained from Hamilton’s
Principle. The problem of nonlinear static stability was solved with the second order of the Koiter’s asymptotic stability
theory of conservative systems. The results obtained from analytical-numerical method were compared with the results
from finite element method (FEM).
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic stability of thin-walled structures has been discussed in many works since the 1960’s. In the
majority of studies numerous simplifications have been made to allow in practice for an effective analysis
of stability of the thin-walled structure. Mathematical models tend to aim at higher precision and closer
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approximation of real structures, which enables one to analyse more and more exactly the phenomena
occurring during and after the loss of dynamic stability.

In literature a quantity of “pulse intensity” (Ari-Gur and Simonetta, 1997) or “pulse velocity” (Cui
et al., 2001) is introduced. The analysis of dynamic stability of plates under in-plane pulse loading can
be divided into three categories depending on pulse duration and magnitude of its amplitude. For pulses
of high intensity the impact phenomenon is observed and for pulses of low intensity the problem becomes
quasi-static. The dynamic pulse buckling occurs when the loading process is of intermediate amplitude and
the pulse duration is close to the period of fundamental natural flexural vibrations (in range of millisec-
onds). In such case the effects of dumping are neglected.

In world literature one can find many criteria allowing for determination of dynamic critical or failure
loads. One of the simplest is the criterion proposed by Volmir (Volmir, 1972), where the dynamic critical
load corresponds to the amplitude of pulse force (of constant duration) at which the maximum plate deflec-
tion is equal to some constant value k (k—one half or one plate thickness).

In many publications dynamic buckling load is determined on the basis of stability criterion by
Budiansky and Hutchinson (Budiansky and Hutchinson, 1966; Hutchinson and Budiansky, 1966), which
states that dynamic stability loss occurs when the maximum plate deflection grows rapidly with the small
variation of the load amplitude.

Material properties of composites can be freely modelled in selected directions or regions. Thus, it is pos-
sible to manufacture structures with variable strength properties. Fibrous composites with properly distrib-
uted (concentrated or rarefied) fibres are examples of materials characterised by such properties. Composite
materials are most often modelled as orthotropic materials. The structures made of such a material (fibrous
composite with varying distribution of fibres) can be very advantageous whenever there is a need for light and
strong structures. The thin-walled plate or walls of girders made of fibrous composite with varying distribu-
tion of fibres can also be economic because when using the same number of composite fibre (which can be very
expensive), it is possible to design such distribution of fibre to obtain the best properties for any kind of load.

In the rich literature devoted to static and dynamic stability problems there are not enough papers deal-
ing with an influence of plate widthwise varying material properties on their behaviour under pulse load
and their dynamic stability.

The paper deals with the dynamic response of a thin-walled plate with varying widthwise material prop-
erties (stiffness along compression) subjected to in-plane pulse loading of rectangular shape. The problem is
investigated on the basis of asymptotic analytical-numerical method and finite element method. The
dynamic buckling occurs when the loading process is of intermediate amplitude and the pulse duration
is close to the period of fundamental transverse vibrations. Budiansky—Hutchinson criterion of dynamic
stability was chosen to determine the critical value of dynamic load factor.

In order to obtain the equations of plate, the non-linear theory of orthotropic thin-walled plates has been
modified in such a way that it additionally accounts for all components of inertia forces. The differential
equations of motion have been obtained from Hamilton’s Principle, taking into account Lagrange’s descrip-
tion, full Green’s strain tensor for thin-walled plates and Kirchhoff’s stress tensor.

2. Formulation of the problem
The rectangular thin-walled composite plate simply supported at both loaded ends and with five different
boundary conditions on non-loaded edges is considered. The following boundary conditions on non-loaded

edges were considered:

— simply supported on both edges further denoted as scl,
— both edges fixed further denoted as sc2,
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— one edge simply supported and second fixed further denoted as sc3,
— one edge simply supported and second free further denoted as sc4,
— one edge fixed and second free further denoted as sc5.

The material is subject to Hooke’s law. It was assumed that principal axes of orthotropy are parallel to
the plate edges (Kolakowski et al., 1999; Kolakowski and Teter, 2000; Kubiak, 2001) and all edges remain
straight and parallel during loading.

The plates are made of fibre composite with varying fibre volume fraction widthwise. The analysed mate-
rial was treated as a homogeneous orthotropic material across the thickness of the plate. Widthwise vari-
able of fibre volume fraction f was assumed as sinusoid function in the following way (Fig. 1):

f = fuv +A-cos (Zzy>, (1)

where f,, = 0.5 is the assumed average value for fibre volume fraction, A4 is the sinusoid amplitude defining
variation of material properties widthwise plate, with a calculated range of amplitude from —0.4 to 0.4 and
b is width of the plate.

In order to determine the magnitude characterising material properties, Eq. (2) found in literature (Kelly,
1989) were used basing on theory of mixture. In both used methods i.e. analytical-numerical and FEM, the
analysed plate was divided into 20 bands (Fig. 1) in such a way that each band has different material prop-
erties. Using Eq. (2) it is possible to determine an equivalent value for the following material properties:

— modulus of elasticity in longitudinal direction E,; and in transverse direction £,
— shear modulus G,
— Poisson ratio v,,;

which are dependent on fibre volume fraction for ith band.
E=E,(1 - fi) +Ecf;;
En(l = VF) + EvV .
En[l = V(1 = VI + EcvVA(1 = V)
Vi = Ym(1 =/ f3) + Vf\/j7,-;
o _ . GuVI( = VI) + Gl = V(1 = V7))
o Gu/fi + Gi(1 = V)
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Fig. 1. Band model of a plate with variable fibre volume fraction.
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where E,, is the Young’s modulus of elasticity for isotropic matrix, E;is the Young’s modulus of elasticity
for isotropic fibre, G, is the shear modulus for isotropic matrix, Gy is the shear modulus for isotropic fibre,
vm is the Poisson’s ratio for isotropic matrix, vy is the Poisson’s ratio for isotropic fibre and f;= Vy/
(Vi + Vp) is the fibre volume fraction for ith band.

According to the Betty—Maxwell’s theorem the Young’s modulus and the Poisson’s ratios occurring in
Eq. (2) have to satisfy the following relation:

Eixviyx = Eiyvixy~ (3)

The assumed model of such a plate is built of narrow longitudinal orthotropic bands (plates), and each
plate can have a different material properties (Kubiak, 2001). The computational model describes precisely
actual structural materials.

A plate model has been assumed. To describe the middle surface strains for each plate band a complete
strain tensor for thin plates has been assumed in the form (Kolakowski et al., 1999; Kolakowski and Teter,
2000; Kubiak, 2001):

_ 17,2 2 2
Eix = Uiy + E(Wi,x +u;, + Ui,x)?

by = Uiy + 3002, 4, 02, )

iy
281‘xy = Vixy = Uiy + Ui x + WixWiy + UixUiy + Ui,xui,y7

where u;, v;, w~displacements parallel to the respective axes x;, y;, z; of the local Cartesian system of co-ordi-
nates, whose plane x; y; coincides with the middle surface of the ith plate (ith band) before its buckling
(Fig. 2).

The relations which describe the sectional forces and moments reduced to the middle surface of the ith
plate (ith band) are written as follows (Kolakowski et al., 1999; Kolakowski and Teter, 2000; Kubiak,
2001):

Ny = Bk (& + mviey)
1 —nv; s
Niy = lflii]lzvf (mvice + nigip),
Niy = Ny = Gihi%xy = 2Gihi8ixy; (5)
My = —Di(Wire + 0,ViWiyy),
M, = _'/I[Di(viwi,xx + Wi»))a
M ixy — _Dliwi,xya

Xi

Fig. 2. Dimensions of the ith band of plate and the assumed local co-ordinate system.
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where

i E,‘ i i E’h3 G,h3
— S Vi Vi D, = ! Dy =—-. (6)

E v v 12(L—ppl) 6

The differential equations of equilibrium obtained from Hamilton’s Principle for a single plate can be
written as:
— pihittiy + Nicx + Ny + [(Niy”i-,y),y + (Nattix) , + (Nixyui,x),y + (Nigtiy) ] =0
= pihitin + Nyix + Nyiy + [(Naivix) , + (Nyitiy) , + (NagiVix) , + (Nayitip) (] = 0
— pihiwin + (Nyix + Niyiy)Wix + (Nyiy + Ni) Wiy + NeWioe + N Wiy + 2N Wiy + Moy o
+2M iy + My, =0

()

The boundary conditions referring to the simply supported ends, i.e. x =0 and x = ¢, are assumed to
be:

b; bi
Z;/ Nu(x; =0,y,0)dy, = Z / Ni(x; = £, y;,)dy; = ZbiinO(t)
0 i 0 i

vi(xi = 0,p,8) = vi(xi = L,y 1) =05 wilx; = 0,y;,0) = wi(x; = £,y;,1) =0
M,i(x; = 0,y;,t) = Myi(x; = £,y,,t) = 0.

@)

Let us obtain the equations of motion of a compressed plate assuming that the natural modes of vibra-
tion coincide with the buckling modes. Let 4 be a load factor, and U-the linear buckling mode with the
minimal critical load factor values A... We assume the following expansion of dynamic displacements field
(Koiter’s type expansion for the buckling problem) (see: (Budiansky, 1974; Sridharan and Benito, 1984;
Schokker et al., 1996; Ohga et al., 1998; Kubiak, 2001):

U= (u, v, w) Z)Lﬁo-i-f(l)U] +fz(1)ﬁ2+"', 9)

where ¢ is the amplitude of the buckling mode (normalised with the equality condition between the max-
imum deflection and the thickness of the first plate /), U, is the prebuckling static displacement field, U, is
the first order displacement field and U, is the second order displacement field.

Similar to the Koiter’s theory for the buckling problem (Koiter, 1963), for plate containing geometric
imperfections # (with only linear initial imperfections determined by the shape of buckling modes), where
U = &'U the potential energy can be written in the form (Budiansky, 1974; Teter and Kolakowski, 2003):
P = %00/12 +%52(I)al (1 - %) %am@(f) +%amlf4(1) — a1 EE(1) ;;r ;
where coefficients ao, a;, aji1, @111 are determined with the well known formulae (Budiansky, 1974; Kola-
kowski et al., 1999; Kolakowski and Teter, 2000; Kubiak, 2001; Teter and Kolakowski, 2003) and &" is the
amplitude of the imperfection in the form of the buckling mode. Moreover, it was assumed that initial
velocity of displacement equals zero & = 0.

Neglecting the inertia forces associated with second order inertia terms related to buckling, the kinetic
energy with the account of expansion (9) and conditions of orthogonality for U; and U, is as follows
(Budiansky, 1974; Sridharan and Benito, 1984):

1 b ok 1
T:E/ / /(uzt+vzt+w2[)dxdydz:fm52t (11)
2 o Jo g , , 27,

(10)
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Then the Lagrange’s equations are:

1 2 . A
— Cult) + (1 _—) Et) + b)) + bun&(t) — &~ =0, (12)
(O Jer Acr
where
) apn ani 2n
= — = — = N T = —. 1
Wy m’ b Pt bin 7 LA ( 3)

When the postbuckling behaviour equilibrium path is symmetrical (a;;; = 0), the Lagrange’s Eq. (12)
can be written as follows:

1 2 2
Eé,tt(t) + (1 —/1—) &) + 171111530) - é*)t

0 cr

=0. (14)
The initial conditions (Sridharan and Benito, 1984; Schokker et al., 1996; Teter and Kolakowski, 2003)
are:

((t=0)=0 and ¢&,(t=0)=0. (15)

The paper takes into account buckling modes for the minimal critical load and the fundamental vibra-
tion modes. For more cases critical buckling modes and vibration modes are the same so the solution of
eigenvalue problem is searched for various values of mth harmonic (Sridharan and Benito, 1984; Schokker
et al., 1996; Teter and Kolakowski, 2003). For the free vibration we set 4 = 0.

The analysed plate was subjected to compression load pulse (Fig. 3). The time of pulse load is equal to
natural period Ty,

The system of ordinary differential equilibrium Eq. (7) for the first and the second order approximations
is solved by a modified numerical transition matrix method in which the state vector of the final edge is
derived from the state vector of the initial edge by numerical integration of the differential equations along
the circumferential direction using the Runge—Kutta formulae by means of the Godunov orthogonalization
method. Solution of this system in form of trigonometric series was presented in the paper by Kubiak
(2001), (see also: Kolakowski et al. (1999), Kolakowski and Teter (2000)).

The equation of motion (12) is solved by the numerical Runge-Kutta method (with step size control and
density output).

Consideration of displacements and load components in the middle surface of plates within the first
order approximation as well as precise geometrical relationships have enabled the analysis of all possible
buckling modes.

The proposed method of solution allows one to take into account an influence of initial imperfections on
the free vibration frequency and of critical loads in an easy way (Sridharan and Benito, 1984; Elishakoff
et al., 1987).

A
to for0<t<T, U,=U,(x=0,Y,t)
fort>T, u,=0
t where:
T > U, =0 - load as displacement of loaded
P plate edge

Fig. 3. Shape of pulse loading.
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3. Results of calculated example

Numerical calculations presented in this paper as an example were conducted using own software based
on equation presented in paragraph 2. To check the correctness of the obtained results the same cases were
calculated using professional software based on finite element method—ANSYS 8.0.

The analysed plate in ANSYS software was divided into four-node shell element (SHELL 43) of six de-
grees of freedom. The dynamic responses of orthotropic structures loaded by pulse force of rectangular
shape with duration T}, were searched for. The analysis in FEM software was divided in two parts. In
the first stage the modal analysis and linear stability analysis (eigenvalue method) were performed in order
to determine the period of natural frequency T}, the critical static load A, and corresponding buckling
mode. In the second stage, buckling eigen-mode with amplitude £* = 0.01 as the initial imperfection shape
of a plate, pulse force as multiples of the static critical load, and time of acting pulse force equals to the
period of natural frequency (T},), were applied to perform structural dynamic analysis using the “Full Tran-
sient Dynamic Analysis™.

The applied method allows to find the response of a structure to pulse loading. All examples of the cal-
culation were conducted for pulse compressed rectangular plate (b = /) with width to thickness ratio equal
b/h =100 for the following boundary conditions:

— simply supported loaded edges;
— five different boundary conditions on longitudinal edges (both simply supported, both fixed, simply sup-
ported-fixed, fixed-free edge, simply supported-free edge),

and for variable widthwise fibre volume fraction (1) with amplitude 4 of sinusoid changing from —0.4 to
0.4.

Epoxy—glass fibre composite was used as an example material for the analysed plate. The material prop-
erties for epoxy matrix and glass fibre is presented in Table 1.

The results obtained using both methods (analytical-numerical further denoted as A-N, FEM) from sta-
tic buckling analysis as a critical force value N, [N] are presented in Fig. 4 and from modal analysis as a
natural frequency (without compression force) wo [Hz] are shown in Fig. 5. Both values presented in Figs. 4
and 5 are shown as a result of function of amplitude 4 (1), which describes fibre volume fraction widthwise
plate.

The coefficient b1, describing the character of the postbuckling equilibrium path obtained from Koiter
second order approximation for all analysed plate is shown in Fig. 6 as a function of amplitude A of sinu-
soid (1).

Figs. 4-6 present the results obtained from analytical numerical method (continuous curve) and from
FEM (marks). The obtained results are consistent.

The increase of amplitude A from 0 to 0.4 corresponds to the increase of plate stiffness near the edge of a
plate and the decrease of amplitude 4 from 0 to 0.4 corresponds to the increase of plate stiffness near the
middle part of a plate. The results presented in Figs. 4 and 5 show that the increasing stiffness of longitu-
dinal edge of a plate causes an increase of critical buckling load. Similarly the amplitude 4 causes an

Table 1
Material properties for Epoxy matrix and Glass fibre (Kelly (1989))

Densityy[kg/m®] Young’s modulus E [GPa] Kirchoff's modulus G [GPa] Poisson ratio v
Epoxy 1246 3.5 1.25 0.33

Glass 2450 71 30 0.22
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2000—-Ncr[N] / sc1 A-N
1750 0 sc1 FEM
1500 sc2 A-N
1250 X sc2 FEM
sc3 A-N
/*Ml% /X/ /O O sc3 FEM
750g—=o — ——sc4 AN
& sc4 FEM
——sc5 A-N
A O sc5 FEM
-0.5 0.5
Fig. 4. Critical load value N, vs. amplitude A.
2600— @, sc1 AN
2400 /X O sc1FEM
k/ sc2 A-N
e 2200 X sc2 FEM
2000 ) ——sc3 AN
C—o—o S5 ¢ e—o 7 O sc3FEM
D\B—\ﬂ\é& ——sc4 AN
f—a—a—a
1600 & sc4 FEM
S sc4 A-N
1400 < A O sc4 FEM
‘ ‘ ‘ 1200 ‘ ‘ ‘ ‘ {
-05 -04 -03 -02 -01 O 0.1 02 03 O 0.5
Fig. 5. Natural frequency w, value vs. amplitude A.

——sci

—5—sc2

—4&—sc3

—*%—sc4

A
‘ —0 ‘ ‘ ‘ |

-05 -04 -03 -02 01 O 01 02 03 04 05

Fig. 6. Coefficient of postbuckling behavior by;;; vs. amplitude A.

increase in the value of natural frequencies except the cases denoted as sc/ (support case 1: simply sup-
ported non-loaded edge of plate) and sc3 (support case 3: one non-loaded edge fixed and second simply
supported), in which an increase of amplitude A4 from 0.4 to 0.2 causes a decrease in the value of natural
frequencies and subsequently a very small increase for increasing value of amplitude A4 to 0.4. For almost all
analysed cases the static buckling modes correspond to one half-waves (m = 1) in longitudinal direction.
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Only for one analysed plate which has a fixed longitudinal edge and material properties corresponding to
amplitude 4 = 0.4 the buckling mode has two half-waves in longitudinal direction (m = 2). For this case
Fig. 6 shows the following results:

— for buckling mode m =1 than b;;;; = 0.268;
— for buckling mode m = 2 than by, = 0.845.

Fig. 7 shows a dynamic displacement ¢ as a function of dimensionless time #/T}, of the simply supported
plates for four values of dynamic load factor A = A/),=1.5; 2.0; 3.0; 4.0 and for impulse duration
T, = 2/ wo(woy—the lowest value of natural frequencies (m = 1)) obtained with the FEM (line with sign)
and analytical-numerical method (line without sign). In all cases shown in Fig. 7 both used methods give
similar results.

Based on maximum value of displacement for different value of dynamic load factor A the graphs shown
in Figs. 8-12 are prepared. According to the dynamic stability criterion for the impulse duration T}, pro-
posed by Budiansky and Hutchinson for dynamic buckling (Eq. (14)), the value of the dynamic load factor
A = ) can be found from graphs presented in Figs. 8—12. As it is shown in these graphs the critical value
of dynamic load factor A, depends on b;;;; value. For the analysed cases the maximum value of critical
dynamic load factor is obtained for a plate with a stiffened middle part of a plate (amplitude 4 = —0.4).
The minimum value of A, is obtained for a plate with nearly uniform distributed fibre volume fraction
widthwise plate (4 = 0.1 to 0.15) for boundary condition cases denoted as sc/, sc2 and sc3. For the cases
of boundary condition with free edges the critical value of 4., decreases with an increasing value of post-
buckling coefficient by;y;.

(@ 67¢
5
: %
3 /4
) Z2N
1 0T,
.
4002040608 112 <A, 82
2l /95  — 3 ) %
3]l 1—4 —*—FEM 1.5 —o—FEM 2
4L | FEM3 ——FEM4 |
(b) 4 ¢

0.2 0.4
—15 —2
2 1 3 —4
—*%—-FEM 1.5 ——FEM2
3] < FEM3 ——FEM4

Fig. 7. Comparison of dynamic deflection obtained with the FEM and analytical-numerical method for simply supported plate and
A= —0.4(a); 0.4(b).
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—=—A=-03
& A=-0.2
—6—A=-0.1

—*—A=0.0

—6—A=01

—*—A=0.2

—©—A=03

—*—A=04

Fig. 8. Dimensionless displacement ¢ vs. dynamic load factor A for case denoted as scl.
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——A=01

—*—A=0.2

—©—A=0.3

%A= 0.4

0 0.5 1 1.5 2 25 3 3.5 4

Fig. 9. Dimensionless displacement ¢ vs. dynamic load factor A for case denoted as sc2.
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0 0.5 1 15 2 25 3 35 4

Fig. 10. Dimensionless displacement ¢ vs. dynamic load factor A for case denoted as sc3.
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3.5 -
¢ ——A=-0.4
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2 —o—A=-0.1
—%—A=0.0
1 —o—A=0.1
1 —%—A=0.2
05 ——A=03
——A=0.4

0

0

Fig. 11. Dimensionless displacement ¢ vs. dynamic load factor A for case denoted as sc4.
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Fig. 12. Dimensionless displacement ¢ vs. dynamic load factor A for case denoted as sc5.

Fig. 13 shows a dynamic displacement ¢ as a function of dimensionless time /T, for the boundary con-
dition case denoted as sc2 (fixed non-loaded edges) and for the amplitude 4 = 0.4. In this case the buckling
mode for the critical value of compressed force is a mode with two half-waves (m = 2). For this case the
dynamic buckling analysis was performed with initial imperfection (&* = 0.01) corresponding to buckling
mode (m = 2) for minimal critical value and for the impulse duration T}, calculated from the lowest value of
natural frequencies (m = 1). The curves shown in Fig. 13 were obtained with the FEM and analytical-
numerical method for four values of dynamic load factor A = 1.0; 2.0; 3.0 and 4.0. The results obtained
using both method are similar for 4 = 1.0 during the whole analysed time and for the remaining analysed
A during the time when displacement increased from zero to maximum value (first part of curves &(¢/7})).
Differences between results obtained from both methods are very well visible for A = 3.0 and A = 4.0 for ¢/
T,> 0.7 (Fig. 13). The reason for the differences in the obtained results is a changeable number of half-
waves which can only be analysed with FEM, because in proposed analytical-numerical method it is as-
sumed that the number of half-waves during dynamic analysis does not change.
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Fig. 13. Comparison of dynamic deflection obtained with the FEM and analytical-numerical method for fixed longitudinal edge of the
plate and 4 = 0.4 for m = 2.

2 - Acr
1.9

1.8 X

1.7 X

1.6 )SK‘V%

1.5

1.4 oS

M«W%W

1.3 SKRY

1.2

1.1
1

bllll

0 02040608 1 12141618 2

Fig. 14. Influence of postbuckling coefficient b1y, on critical value of dynamic load factor A.,.

For cases in which the number of half-waves in the longitudinal direction is m = 1 it is possible to pre-
pare graphs (Fig. 14) showing the influence of postbuckling coefficient 5,11, on the critical value of dynamic
load factor A, for initial imperfection &* = 0.01.

4. Conclusion

The results of numerical calculation obtained from FEM and proposed analytical-numerical method
were similar in all analysed cases. Only in cases for which the buckling mode (number of half-waves) varies
during and after impulse of load (case denoted as sc2 for 4 = 0.4 and A > 2) the results obtained using both
methods were different (Fig. 13). The differences in results come from the fact that the proposed method
does not allow to analyse the change of buckling modes over time progress. Nevertheless the cases with
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different results were obtained for deflection load factor greater than two and according to Budiansky—
Hutchinson criterion the critical value of dynamic load factor A, for this case was found in range
1 <A < 1.5 (Fig. 9). In spite of differences in results obtained using both method for deflection load factor
A > 2 and for time greater then time corresponding to maximal displacement, proposed analytical-numer-
ical method of analysis of the dynamic buckling gives positive results because this method bases on criterion
proposed by Budiansky—Hutchinson in which only the maximal value of deflection ¢ is used.

The advantage of the proposed method of finding A, for analysed plate in comparison with FEM is time
of calculation. The time of obtaining one curve &(7},) (Fig. 13) using analytical-numerical method averages
20 s, while using FEM the time of calculation averages 1.5 h. The times of calculation were obtained on PC
computer with Pentium 4. The advantage of FEM is postprocessing (very good tools for presenting calcu-
lated results) and FEM gives possibility to analyse more complicated structures than plates with widthwise
varying material properties.
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